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The initial studies of nonequilibrium flow in nozzles was
done by Bray,’ who found that, as the flow temperature
dropped, the composition quickly froze as a result of the large
decrease in reaction rate. In this problem the same effect is
caused by the rapid drop of the Fp/u term as the solution
progresses. Since all coupling between the chemical effects
and the thermodynamic variables occurs through the reaction
equation, the solutions in general do not proceed past the point
at which the flow composition freezes. This problem, how-
ever, does not exist if the nozzle distance is specified as a func-
tion of temperature, as shown on Fig. 1. In this case the
nozzle distance is an inverse function of the temperature, and
the fact that the rate of change of r was initially large accounts
for a relatively gradual change in area near the nozzle throat.
An almost conical nozzle with a very short transition at the
throat results.

The mass fraction decaying as an inverse temperature func-
tion is shown in Fig. 2. Additional results for a variety of
cases are given by Widmer.® Although these classes of solu-
tions are restricted to that portion of the nozzle prior to the
freezing point, the coupling terminates at this point, and there
can be no further advantages obtained from geometrical con-
siderations throughout the remainder of the expansion.

The results shown in Figs. 1 and 2 show that the electronic
analog computer is a versatile nozzle simulator that conveni-
ently facilitates the variation of specified processes and the
rapid exploration through a wide spectrum of flow param-
eters. Comparison between specified design properties and
those actually measured in a prototype nozzle system might
afford new insight into the mechanism of real gas flow. In
addition, the precise simulation of extreme flight conditions
may be obtained more readily in the laboratory by proper
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nozzle design, although, undoubtedly, viscous effects would
have to be considered also.
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Axisymmetrical Turbulent Jet:
Tollmien’s Problem Extended

Zrev RoreEM*
Technion-Israel Institute of Technology, Haifa, Israel

ANY years ago, Tollmien® ? solved the boundary-layer
equations for the case of an axisymmetrical jet of in-
compressible, Newtonian fluid in isothermal, turbulent flow,
using Prandtl’s mixing-length theory. The case is of con-
siderable interest in the experimental study of turbulence.
Recently, a generalized version of Tollmien’s equation was
solved? in a different context, using numerical techniques dif-
ferent from those of Tollmien. Occasion was taken to recom-
pute Tollmien’s case, extending considerably the number of
points for which numerical results are given, as well as obtain-
ing results for the axial velocity when the kinematic momen-
tum is known and for the axial velocity gradients for which
no data had been available. Also, some of the approximations
to the accurate boundary-layer solutions made in the earlier
work were avoided, and it was thus believed that the present
solution would be somewhat more accurate.
The boundary-layer equations for axisymmetrical, incom-
pressible, isothermal flow of a Newtonian fluid are
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where z is the axial coordinate, 7 is the radial coordinate, and
u and v are the velocity components in the two directions,
respectively. The boundary conditions are

r =20 v =0 (3a)
r=20 du/or = 0 (3b)
r= o u=0 Be)t

Equations (1) and (2) are transformed as follows: assuming
Prandtl’s mixing-length hypothesis,
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1 Tollmien assumed a finite boundary-layer thickness gz,
which, by implication, led to a discontinuity in F’’’ at 4 = gz.
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Table 1 Numerical results of integration®?
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Table 2 Comparison with Tollmien’s data®

z, as constant pressure is assumed. The velocities and the
velocity gradients then become
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Equations (1) and (2) now yield the total differential equa-
tion:

[ tov] 2[5 o

with boundary conditions

F'—F/2=0 atp =0 (16a)
A/n) F" — F'/ng) =0 atnp =0 (16b)
F'/p =0 atn = o (16¢)

It is known that there is no singularity of the functions

F'(n), [F"(q) — F'()/n]/7, and [F'(n) — F(n)/n] in the
flow field. Moreover, obviously, [F/(%)/%] = 0y # 0; so the
boundary conditions (16) may be simplified to

F©) =0

F'(0) =0 [F"(0) =£0] (17)

: F'(y) — F'(qg) — F'(9)/n = u/uo F'(g) — F(n)/n
7 F'(9)/q  F)/q F'(n) F'(n)/n u/Uo 7 Exact Tollmien Exact Tollmien

0.0010 1.36075 0.00068 -1.36075 0.00000 1.00000 0 1.0000 1.000 4] 0

0.0110 1.36006 0.00748 1.35895 -—0.10088 0.99949 0.0510 0.9946 0.0253

0.0210 1.35884 0.01426 1.35592 —0.13928 0.99860 0.0610  0.9930 0.0302

0.0310 1.35730 0.02101 1.35206 —0.16908 0.99746 0.0625 0.995 0.031

0.0410 1.35548 0.02774 1.34751 —0.19424 0.99613 0.0710  0.9912 0.0351

0.0510 1.35342 0.05443 1.34239 —0.21638 0.99462 0.1210  0.9804 0.0588

o - o - 0.125 0.977 0.060

@ Copies of the complete table may be obtained from the author.

4 Enl')or: 0.00010; xi)ntegration chched to 3.4000; infinity at » = 3.4000 8;;1)0 0.9779 0.941 0.0634 0.114
[F’ (3.4000) = smaller than 10-%]; F(w) = 1.54853; J‘om [(F2/9]ldn = 0:2510 0.9421 ) 0.1152 )
1.000072. 0.3510 0.9057 0.1520

0.375 0.895 0.160
where B is the square of the mixing length, introduce a stream 0.4010 0.8858 0.1680
function: 0.5010 0.8435 0.843 0.1949 0.194
0.6010 0.7985 0.2149
_ 1y _loy ) 0.625 0.789 0.219
T ror - r Ox 0.6510 0.7753 0.2222
0.7510 0.7279 0.727 0.2317 0.230
and the similarity transformation: 1.0010 0.6072 0.606 0.2261 0.225
1.2510 0.4893 0.487 0.1840 0.182
Y(rx) = (K/2m)Y2(3B) 131 /3F () (6) 1.5010 0.3798 0.376 0.1142 0.109
1.7510 0.2822 0.283 0.0271 0.028
n(r,z) = r-(3Bx)~'/3 ) 2.0010 0.1988 0.198 —0.0669 —0.066 -
A 2.2510 0.1305 0.130 —0.1578 —0.159
where K is total fluid kinematic momentum: 2.5010 0.0774 0.077 —0.2371 —0.237
- 2.7510 0.0389 0.039 —0.2979 —0.298
K =2 f rudr = const (8) 3.0010 0.0142 0.014 —0.3347 —0.334
0 3.2510 0.0019 0.002 —0.3437 —0.344
The kinematic momentum must obviously be a constant with g'iglo 0.0002 0 —0.3389 —0.335

@ Here F’(n)/n|p-s = 1.00000; j‘om[(F')’/n]dr) = 0.540101. Error:

0.00010; integration checked to 3.400; infinity at» = 3.4000 [F’(3.4000) =
smaller than 10-3]; F( ) = 1.13800. Only part of complete table of calcu~
lated data given here.

The remaining constant of integration is obtained from the
normalized condition (8):

o gy - 1)

Equation (15) may be integrated immediately once, taking
aceount of (17), to yield

FF' = [F'/qn — F"]2 A (19)

Equations (18) and (19) were integrated numerically as a set
of three simultaneous nonlinear first-order equations® using the
Runge-Kutta-Gill method.* Results are given (Table 1)
and compared to Tollmien’s data where possible (Table 2).}

It is seen that Tollmien’s data are surprisingly accurate.
The velocity boundary layer thickness, defined to reach to a
value of » where the axial velocity had decreased to 19 of its
central value, was obtained by interpolation. The numerical
value found was 3.063.

Finally, the total flow quantity is obtainable from F ():

F(=) = (Q/27) (K/2w)~1/2- (3Bx) /3 (20)

F( ), not given in Ref. 1, was found to be equal to 1.549.
It may be shown® that the basic assumptions underlying
Eq. (1) will be applicable only for the range

[22/B]~?3 « 1 (21)

ie., ¢*? « 1, where ¢ is the constant of proportionality re-
lating mixing length to the axial coordinate z.

A representative value found experimentally® 20 diameters
downstream from a turbulent-jet orifice is ¢#/? = 4.24 X 1073,

1 Tollmien uses a different multiplicative constant in his simi-
larity variable 5, by normalizing F'(5)/n|n~q instead of (18).
Thus data in Table 2 do not satisfy (18).
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Minimum Lift-Drag Ratio Required for
Global Landing Coverage

Ricaarp A. WaLLACE* AND WiLLiaMm A. GrRAYT
Boeing Company, Sealtle, Wash.

PRINCIPAL advantage of lifting re-entry vehicles is the
lateral range obtained by turning during atmospheric
flight. With sufficient lift-drag ratio (L/D), a re-entry glider
can land at any desired point on the globe after waiting no
longer than one circumnavigation to de-orbit. Higher L/D
would not increase landing site selection capability. There-
fore, the lowest /D that provides global coverage might be
considered a maximum design goal for lifting re-entry vehicles.
As described below, an L/D of 3.6 is found sufficient to land
a re-entry glider anywhere on earth, if a particular bank-angle
schedule is used.

Determination of this minimum /D is complicated be-
cause the landing footprint is strongly influenced by the
choice of enroute bank-angle variation. Thus, the problem
becomes one of optimizing the bank-angle schedule for mini-
mum L/D with a terminal constraint for global-landing cover-
age. Although this problem is amenable to a direct mathe-
matical approach,! the procedure chosen was a cut-and-try
method guided by past results of such mathematical pro-
cedures? and past experience with turning trajectories. This
procedure gives reasonable results and an insight into the
influence of bank-angle schedules on L/D values required for
global coverage.

The minimum L/D for global coverage was found for several
different bank schedules by plotting the maximum lateral
range reached vs L/D and extrapolating to the necessary
range for complete global coverage. In Fig. 1 the necessary
lateral range is described simply as the ability to reach the
North Pole after de-orbiting along the equator. Figure 2
illustrates the four bank-angle schedules that were studied.

In simplified treatments of this problem, a bank-angle of

45° is considered close to optimum. This is satisfactory for

L/D less than or equal to 2, but it is unsatisfactory for large
L/D and large lateral range.

The bank-angle schedules that depend on heading (Fig. 2a)
were found to be the most effective of those tried in accom-
plishing large lateral range with minimum L/D. Because
large bank angles produce quick heading change but also
reduce flight range, it seems reasonable to expect that the best
bank schedule will incorporate large bank angle to generate
initial heading change followed by more moderate bank angle
to conserve range.

These trends are confirmed by turn optimization studies?
for vehicles capable of lateral range on the order of 2000 naut
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Fig. 1 Necessary lateral range described simply as the
ability to reach the North Pole after de-orbiting along the
equator.
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Fig.2 a) Bank angle varied linearly with heading at two
rates: low-rate reduction until the heading equals 2°,
then rapid reduction in bank angle as the heading goes to
zero (due north). b) Bank angle varied linearly with
velocity. ¢) Bank angle kept constant until heading
reaches zero (due north); thereafter the bank angle is
kept zero. d) Bank angle kept constant at 45° through-
out the flight.

miles (L/D = 2). Gains of around 10% in lateral range are
obtained by using an optimum diminishing bank-angle
schedule rather than simple 45° bank turns, which appear
best in simplified analyses.® For global coverage, however,
much larger gains are available. Contrast the results in Fig.
1 for 45° bank schedules D or 2 with those for diminishing
bank-angle schedule 42, and note the widening difference in
lateral range (as indicated by closer approach to the North
Pole) as L/D increases. The superior performance with
diminishing bank schedules materially reduces the L/D
needed to reach the pole.



